Part Number Hot Search : 
XC6405A TEA7089A SSS5N90A D1510 CY7C14 LA6542M HV232 X24F016V
Product Description
Full Text Search
 

To Download 5962-8777101M3A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Quad Low Offset, Low Power Operational Amplifier OP400
FEATURES Low Input Offset Voltage 150 V Max Low Offset Voltage Drift, Over -55 C to +125 C 1.2 pV/ C Max Low Supply Current (Per Amplifier) 725 A Max High Open-Loop Gain 5000 V/mV Min Input Bias Current 3 nA Max Low Noise Voltage Density 11 nV/Hz at 1 kHz Stable With Large Capacitive Loads 10 nF Typ Pin Compatible to LM148, HA4741, RM4156, and LT1014 with Improved Performance Available in Die Form GENERAL DESCRIPTION PIN CONNECTIONS 14-PIN CERAMIC DIP
(Y-Suffix)
16-PIN SOIC
(S-Suffix)
14-PIN PLASTIC DIP
(P-Suffix)
The OP400 is the first monolithic quad operational amplifier that features OP77 type performance. Precision performance no longer has to be sacrificed to obtain the space and cost savings offered by quad amplifiers. The OP400 features an extremely low input offset voltage of less than 150 V with a drift of under 1.2 V/C, guaranteed over the full military temperature range. Open-loop gain of the OP400 is over 5,000,000 into a 10 k load, input bias current is under 3 nA, CMR is above 120 dB, and PSRR is below 1.8 V/V. On-chip zener-zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industry-standard quad pinout which does not have null terminals.
The OP400 features low power consumption, drawing less than 725 A per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry standard op amp. Voltage noise density of the OP400 is a low 11 nV/Hz at 10 Hz, which is half that of most competitive devices. The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems using these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical.
Figure 1. Simplified Schematic (One of Four Amplifiers Is Shown)
REV. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) 2003 Analog Devices, Inc. All rights reserved.
OP400-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V =
S
15 V, TA = 25 C, unless otherwise noted.)
OP400A/E Typ Max 40 0.1 150 Min OP400F Typ Max 60 0.1 1.0 3.0 0.1 0.75 0.5 36 18 22 11 15 0.6 10 200 36 18 2.0 6.0 230 Min OP400G/H Typ Max 80 0.1 0.1 0.75 05 22 11 15 0.6 10 200 3.5 7.0 300 Unit V V/mo nA nA V p-p
Parameter Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density1 Input Noise Current Input Noise Current Density Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain
Symbol Conditions VOS
Min
IOS IB en p-p en
VCM = V VCM = V 0.1 Hz to 10 Hz fO = 10 Hz1 fO = 1000 Hz1 0.1 Hz to 10 Hz fO= 10 Hz
0.1 0.75 0.5 22 11 15 0.6 10 200
nV/Hz pAp-p pA/Hz M G
in p-p in RIN RINCM AVO
VO = 10 V RL = 10 k RL = 2 k
5000 2000 12
12000 3500 13 140
3000 1500 12 115
7000 3000 13 140
3000 1500 12 110
7000 3000 13 135
V/mV V dB
Input Voltage Range3 Common Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier Slew Rate Gain Bandwidth Product Channel Separation Input Capacitance Capacitive Load Stability
IVR CMR PSRR VCM = 12 V VS = 3 V to 18 V RL = 10 k RL = 2 k No Load
120
0.1 12 11 12.6 12.2 600 0.15 500 123 135
1.8 12 11 725 0.1
0.1 12.6 12.2 600 0.15 500 123 135
3.2 12 11 725 0.1
0.2 12.6 12.2 600 0.15 500 123 135
5.6
V/V V
VO
ISY SR GBWP CS
725
0.1 AV = 1 VO = 20 V p-p fO = 10 Hz2
A V/s kHz dB
CIN AV = 1 No Oscillations
3.2
3.2
3.2
pF
10
10
10
nF
NOTES 1 Sample tested 2 Guaranteed but not 100% tested. 3 Guaranteed by CMR test
-2-
REV. C
OP400
SPECIFICATIONS (continued)
ELECTRICAL CHARACTERISTICS (@ V =
S
15 V, -55 C < TA = 125 C for OP400A, unless otherwise noted.)
Conditions Min Typ 70 0.3 01 1.3 9000 2300 12.5 130 0.2 12.4 12 600 8 Max 270 12 2.5 5.0 Unit V V/C nA nA V/mV V dB V/V V A nF
Parameter Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range* Common Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier Capacitive Load Stability
NOTE
*Guaranteed by CMR test
Symbol VOS TCVOS IOS IB AVO IVR CMR PSRR VO ISY
VCM = 0 V VCM = 0 V VO = 10 V RL = 10 k RL = 2 k VCM = 12 V VO = 3 V to 18 V RL = 10 k RL = 2 k No Load AV = 1 No Oscillations
3000 1000 12 115 12 11
3.2
775
ELECTRICAL CHARACTERISTICS
Parameter Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Symbol Conditions VOS TCVOS IOS VCM = 0 V E, F, G Grades H Grade VCM = 0 V E, F, G Grades H Grade VCM = 0 V RL = 10 k RL = 2 k * VCM = 12 V VS = 3 V to 18 V RL = 10 k RL = 2 k No Load No Oscillations
(@ VS = 15 V, -25 C < TA < 85 C for OP400E/F, 0 C < TA < 70 C for OP400G, -40 C < TA < +85 C for OP400H, unless otherwise noted.)
Min OP400A/E Typ Max 60 03 220 1.2 Min OP400F Typ Max 80 0.3 350 2.0 Min OP400G/H Typ Max 110 0.6 400 2.5 Unit V V/C
0.1
2.5
0.1
3.5
0.2 0.2
6.0 12.0
nA
Input Bias Current
IB
0.1
2.5
0.1
3.5
1.0 1.0
12.0 20.0
nA
Large-Signal Voltage Gain
AVO
3000 1500 12 115
10000 2700 12.5 135
2000 1000 12 110
5000 2000 12.5 135
2000 1000 12 105
5000 2000 12.5 130
V/mv V dB V/V V A nF
Input Voltage Range Common-Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier Capacitive Load Stability
NOTE
*Guaranteed by CMR test.
IVR CMR PSRR
0.15 12 11 12.4 12 600 10
3.2 12 11 775
0.15 12.4 12 600 10
5.6 12 11 775
0.3 12.6 12.2 600 10
10.0
VO ISY
775
REV. C
-3-
OP400
DICE CHARACTERISTICS
DIE SIZE 0.181 (4.60
0.123 inch, 22,263 sq. milts
3.12 mm, 14.35 sq. mm) 8. OUT C 9. -IN C 10. +IN C 11. V12. +IND 13. -IN D 14. OUT D
1. OUT A 2. -IN A 3. +INA 4. V+ 5. +IN B 6. -IN B 7. OUT B
WAFER TEST LIMITS (@ V =
S
15 V, TA = 25 C, unless otherwise noted.)
Symbol VOS VOS IB AVO IVR CMR PSRR VO ISY Conditions VCM = 0 V VCM = 0 V VO = 10 V RL = 10 k RL = 2 k * VCM = 12 V VS = 3 V to 18 V RL = 10 k RL = 2 k No Load OP400GBC Limit 230 2 6 3000 1500 12 115 3.2 12 11 725 Unit A Max nA Max nA Max V/mV Min V Min dB Min V/V Max V Min A Max
Parameter Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range* Common Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier
NOTE
*Guaranteed by CMR test. Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.
-4-
REV. C
OP400
ABSOLUTE MAXIMUM RATINGS Package Type
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 30 V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage Output Short-Circuit Duration . . . . . . . . . . . . . . . Continuous Storage Temperature Range P, Y Package . . . . . . . . . . . . . . . . . . . . . . -65C to +150C Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300C Junction Temperature (TJ) . . . . . . . . . . . . . . -65C to +150C Operating Temperature Range OP400A . . . . . . . . . . . . . . . . . . . . . . . . . . -55C to +125C OP400E, OP400F . . . . . . . . . . . . . . . . . . . -25C to +85C OP400G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to 70C OP400H . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to +85C
jA
1
IC
Units
14-Pin Ceramic DIP (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S)
94 76 88
10 33 23
C/W C/W C/W
NOTES 1. jA is specified for worst-case mounting conditions, i.e., jA is specified for device in socket for TO, CERDIP, and PDIP packages; jA is specified for device soldered to printed circuit board for SOIC package. 2. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted.
ORDERING INFORMATION
TA = 25 C VOS Max (mV) 150 150 230 300 300 300 300 300
Package CERDIP 14-Lead OP400AY OP400EY OP400FY OP400GP OP400GS OP400GS-REEL OP400HP OP400HS Plastic
Die
Operating Temperature Range MIL IND IND COM COM COM XIND XIND
OP400GBC
NOTE Burn-in is available on commercial and industrial temperature range parts in CERDIP, PDIP, and TO-can packages.
For Military processed devices, please refer to the standard microcircuit drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp
SMD Part Number ADI Equivalent
5962-8777101M3A 5962-8777101MCA
OP400ATCMDA OP400AYMDA
CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP400 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. C
-5-
OP400-Typical Performance Characteristics
TPC 1. Warm-Up Drift
TPC 2. Input Offset Voltage vs. Temperature
TPC 3. Input Bias Current vs. Temperature
TPC 4. Input Offset Current vs. Temperature
TPC 5. Input Bias Current vs. Common-Mode Voltage
TPC 6. Common-Mode Rejection vs. Frequency
TPC 7. Noise Voltage Density vs. Frequency
TPC 8. Current Noise Density vs. Frequency
TPC 9. 0.1 Hz to 10 Hz Noise
-6-
REV. C
OP400
TPC 10. Total Supply Current vs. Supply Voltage
TPC 11. Total Supply Current vs. Temperature
TPC 12. Power Supply Rejection vs. Frequency
TPC 13. Power Supply Rejection vs. Temperature
TPC 14. Open-Loop Gain vs. Temperature
TPC 15. Open-Loop Gain and Phase Shift vs. Frequency
TPC 16. Closed-Loop Gain vs. Frequency
TPC 17. Maximum Output Swing Frequency
TPC 18. Total Harmonic Distortion vs. Frequency
REV. C
-7-
OP400
TPC 19. Overshoot vs. Capacitive Load
TPC 20. Short Circuit vs. Time
TPC 21. Channel Separation vs. Frequency
TPC 22. Large-Signal Transient Response
TPC 23. Small-Signal Transient Response
TPC 24. Small-Signal Transient Response CLOAD = 1 nF
Figure 2. Noise Test Schematic
-8-
REV. C
OP400
Table I. Gain Bandwidth
Gain 5 10 100 1000
Bandwidth 150 kHz 67 kHz 7.5 kHz 500 Hz
The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10 V to +10 V if required.
Figure 3. Burn-In Circuit
APPLICATIONS INFORMATION
The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP400. Total supply current can be reduced by connecting the inputs of an unused amplifier to -V. This turns the amplifier off, lowering the total supply current.
APPLICATIONS Dual Low-Power Instrumentation Amplifier
A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 1. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4 V/C over the military temperature range which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low-power instrumentation amplifier is a function of gain and is shown in Table I.
Figure 4. Dual Low Power Instrumentation Amplifier
REV. C
-9-
OP400
Figure 5. Bipolar Current Transmitter
BIPOLAR CURRENT TRANSMITTER
In the circuit of Figure 5, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is 5 mA with voltage compliance equal to 10 V when using 15 V supplies. Output impedance of the current transmitter exceeds 3 M and linearity is better than 16 bits with gain set for a full scale input of 100 V.
DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER
The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at 15 V, to a maximum of 24 V p-p. The differential output instrumentation amplifier of Figure 6 can provide an output voltage swing of 48 V p-p when operated with 15 V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs will swing 24 V p-p but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range 10 V. PSRR of the amplifier is less than 1 V/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 V/C over the military temperature range.
Figure 6. Differential Output Instrumentation Amplifier
-10-
REV. C
OP400
MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE
Figure 7 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation
under 25 V/mA. Line regulation is better than 15 V/V and output voltage drift is under 20 V/C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 V p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs.
Figure 7. Multiple-Output Tracking Voltage Reference
REV. C
-11-
OP400
OUTLINE DIMENSIONS 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) [Y-Suffix]
Dimensions shown in inches and (millimeters)
0.005 (0.13) MIN
14
14-Lead Plastic Dual In-Line Package [PDIP] (N-14) [P-Suffix]
Dimensions shown in inches and (millimeters)
8 7
PIN 1
1
0.310 (7.87) 0.220 (5.59)
0.320 (8.13) 0.290 (7.37)
0.060 (1.52) 0.015 (0.38)
14 1
8 7
0.295 (7.49) 0.285 (7.24) 0.275 (6.99)
0.100 (2.54) BSC
0.785 (19.94) MAX
0.100 (2.54) BSC 0.015 (0.38) MIN
0.200 (5.08) MAX
0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36)
0.150 (3.81) MIN 0.070 (1.78) SEATING 15 PLANE 0 0.030 (0.76)
0.325 (8.26) 0.310 (7.87) 0.300 (7.62)
0.015 (0.38) 0.008 (0.20)
0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE
0.150 (3.81) 0.135 (3.43) 0.120 (3.05)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
0.022 (0.56) 0.060 (1.52) 0.018 (0.46) 0.050 (1.27) 0.014 (0.36) 0.045 (1.14)
0.015 (0.38) 0.010 (0.25) 0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MO-095-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
16-Lead Standard Small Outline Package [SOIC] Wide Body (R-16) [S-Suffix]
Dimensions shown in millimeters and (inches)
10.50 (0.4134) 10.10 (0.3976)
16
9
7.60 (0.2992) 7.40 (0.2913)
1 8
10.65 (0.4193) 10.00 (0.3937)
1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) 0.51 (0.0201) 0.33 (0.0130)
2.65 (0.1043) 2.35 (0.0925)
0.75 (0.0295) 0.25 (0.0098)
45
COPLANARITY 0.10
SEATING PLANE
0.32 (0.0126) 0.23 (0.0091)
8 0
1.27 (0.0500) 0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-013AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Revision History
Location 6/03--Data Sheet changed from REV. B to REV. C. Page
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 10/02--Data Sheet changed from REV. A to REV. B. Addition of ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4/02--Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to GENERAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 2 Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
-12-
REV. C
C00304-0-6/03(C)
0.098 (2.49) MAX
0.685 (17.40) 0.665 (16.89) 0.645 (16.38)


▲Up To Search▲   

 
Price & Availability of 5962-8777101M3A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X